Suites géométriques

I Rappels et expression du terme général d'une suite géométrique

1) Rappels

Définition 1

Une suite géométrique (u_n) est définie par son premier terme u_0 ou (u_1) et une **relation de récurrence** du type $u_{n+1} = q \times u_n$

q est un nombre fixe appelé la raison

Exemple	1
Evenible	_1

1	Soit (u_n)]	la suite	définie	par	$u_0 = 6$	$_{ m et}$	u_{n+1}	=	$2u_n$
---	--------	-----------	----------	---------	-----	-----------	------------	-----------	---	--------

Cette suite estde raison

 $u_1 =$

 $u_2 =$

 $u_3 =$

etc.

2) Soit (v_n) une suite géométrique de raison 1,4 et de premier terme $v_1=2$

Sa formule de récurrence est donc :

 $v_2 =$

 $v_3 =$

 $v_4 =$

etc.

3) On considère la liste suivante : 2 ; 3,5 ; 6,125

Dans cet ordre, ces nombres peuvent-ils être les termes consécutifs d'une suite géométrique?

Donc

2) Formule explicite

Propriété 1

Si (u_n) est une suite géométrique de raison q, alors

 $u_n = u_0 \times q^n$ ou $u_n = u_1 \times q^{n-1}$

Remarque

On peut ainsi calculer n'importe quel terme de (u_n) sans avoir besoin de calculer les précédents

Exercice 1

Léa souhaite acheter son prochain téléphone grâce à son argent de poche. Elle possède déjà 5 euros.

Chaque mois ses parents lui doublent son argent de poche.

Pour tout entier naturel, on note u_n la somme disponible dans sa tirelire après "n" mois. On a donc $u_0 = 5$

- 1) Déterminer u_1 et u_2
- 2) Expliquer pourquoi la suite (u_n) est une suite géométrique. Exprimer alors u_{n+1} en fonction de u_n

3) Exprimer u_n en fonction de n (cela signifie la même chose que : donner le terme général de la suite u_n

II Somme des termes d'une suite géométrique

Propriété 2

Somme des termes consécutifs d'une suite géométrique de raison q:

$$S = 1^{er} terme \times \frac{1 - q^{nombre-de-termes}}{1 - q}$$

Exemple 2

Soit (u_n) une suite géométrique de premier terme $u_0 = 4$ et de raison r = 1, 1

- 1) Calculer $S_1 = u_0 + u_1 + ... + u_5$
- 2) Calculer $S_2 = u_9 + u_{10} + ... + u_{17}$

III Moyenne géométrique de 2 nombres

Définition 2

La moyenne arithmétique de 2 nombres a et b positifs est un nombre m tel que $\frac{a}{m} = \frac{m}{b}$

Propriété 3

- 1) Si une suite (u_n) est géométrique, alors la moyenne géométrique de u_{n-1} et u_{n+1} est égale à u_n pour tout entier naturel n non nul
- 2) La moyenne géométrique de deux nombres a et b positifs est $m=\sqrt{ab}$

Exemple 3

Démonstration

2)

Exercice 2

Comparaison de suites

Amandine possède 200 euros qu'elle souhaite placer dans une banque. Son banquier lui propose deux options :

Option 1 : Elle dépose le capital de départ, et chaque année, la banque lui reverse 6% du capital de départ

Option 2: Elle dépose le capital de départ, et chaque année, la banque lui reverse 4% du capital de l'année précédente.

L'objectif est de savoir à partir de combien d'année une option est plus intéressante que l'autre pour elle.

On note u_n la valeur du capital d'Amandine après n années si elle a choisi l'option 1, et v_n la valeur du capital d'Amandine après n années si elle a choisi l'option 2

- 1) Calculer u_1, u_2, u_3 et v_1, v_2, v_3
- 2) Quelle est la nature des suites (u_n) et (v_n) ? Donner le premier terme et la raison
- 3) Exprimer u_n et v_n en fonction de n
- 4) Déterminer le plus petit entier n tel que $u_n < v_n$. Interpréter ce résultat dans le contexte de l'exercice

RÉSUMÉ	(u_n) une suite géométrique de raison q positive de premier terme u_0 positif.	Exemple: $q=2$ et $u_0=4$					
Définition	$u_{n+1} = q \times u_n$	$u_{n+1} = 2 \times u_n$ Le rapport entre un terme et son précédent est égal à 2.					
Propriété	$u_n = u_0 \times q^n$ $u_n = u_1 \times q^{n-1}$	$u_n = 4 \times 2^n$					
Somme des termes consécutifs	$Somme = 1er terme \ imes rac{1 - raison^{nombre de termes}}{1 - raison}$	$u_4 + \cdots u_{12} = u_4 \times \frac{1 - 2^9}{1 - 2}$					
Variations	Si $q > 1$: (u_n) est croissante. Si $0 < q < 1$: (u_n) est décroissante.	q=2>1 La suite (u_n) est croissante.					
	On parle de croissance exponentielle.	120-					
		100-					
Représentation		80-					
graphique		60-					
		40-					
		20-					
		0 1 2 3 4 5					