On considère la suite (u_n) à valeurs réelles définie par $u_0 = 1$ et, pour tout entier naturel n,

$$u_{n+1} = \frac{u_n}{u_n + 8}.$$

Partie A: Conjectures

Les premières valeurs de la suite (u_n) ont été calculées à l'aide d'un tableur dont voici une capture d'écran :

	Α	В
1	n	u_n
2	0	1
3	1	0,111 111 11
4	2	0,013 698 63
5	3	0,001 709 4
6	4	0,000 213 63
7	5	2,6703E-05
8	6	3,3379E-06
9	7	4,1723E-07
10	8	5,2154E-08
11	9	6,5193E-09
12	10	8,1491E-10

- 1. Quelle formule peut-on entrer dans la cellule B3 et copier vers le bas pour obtenir les valeurs des premiers termes de la suite (u_n) ?
- **2.** Quelle conjecture peut-on faire sur les variations de la suite (u_n) ?
- **3.** Quelle conjecture peut-on faire sur la limite de la suite (u_n) ?
- **4.** Écrire un algorithme calculant u_{30} .

Partie B : Étude générale

- 1. Démontrer par récurrence que, pour tout entier naturel n, $u_n > 0$.
- **2.** Étudier les variations de la suite (u_n) .
- **3.** La suite (u_n) est-elle convergente? Justifier.

Partie C: Recherche d'une expression du terme général

On définit la suite (v_n) en posant, pour tout entier naturel n,

$$v_n = 1 + \frac{7}{u_n}.$$

- 1. Démontrer que la suite (v_n) est une suite géométrique de raison 8 dont on déterminera le premier terme.
- 2. Justifier que, pour tout entier naturel n,

$$u_n = \frac{7}{8^{n+1}-1}.$$

- **3.** Déterminer la limite de la suite (u_n)
- **4.** On cherche dans cette question le plus petit entier naturel n_0 tel que, pour tout entier naturel n supérieur ou égal à n_0 , $u_n < 10^{-18}$.

 Justifier l'existence d'un tel entier n_0 et déterminer sa valeur.

Ex 2 On considère la suite (u_n) définie par $u_0=rac{1}{2}$ et telle que pour tout entier naturel n :

$$u_{n+1}=\frac{3u_n}{1+2u_n}$$

- 1. **a.** Calculer u_1 et u_2 .
 - **b.** Démontrer, par récurrence, que pour tout entier naturel n, $0 < u_n$.
- 2. On admet que $u_n < 1$ pour tout entier naturel n. Montrer que la suite (u_n) est croissante.
- 3. Soit (v_n) la suite définie, pour tout entier naturel n, par $v_n=\dfrac{u_n}{1-u_n}.$
 - **a.** Montrer que la suite (v_n) est une suite géométrique de raison 3.
 - **b.** Exprimer, pour tout entier naturel n, v_n en fonction de n.
 - **c.** En déduire que, pour tout entier naturel $n, u_n = \dfrac{3^n}{3^n+1}.$
 - **d.** Déterminer la limite de la suite (u_n) .

Ex 3

On considère la suite numérique (u_n) définie sur \mathbb{N} par :

$$u_0 = 2$$
 et pour tout entier naturel n , $u_{n+1} = -\frac{1}{2}u_n^2 + 3u_n - \frac{3}{2}$.

Partie A: Conjecture

- Calculer les valeurs exactes, données en fractions irréductibles, de u1 et u2.
- Donner une valeur approchée à 10⁻⁵ près des termes u₃ et u₄.
- 3. Conjecturer le sens de variation et la convergence de la suite (u_n) .

Partie B: Validation des conjectures

On considère la suite numérique (v_n) définie pour tout entier naturel n, par : $v_n = u_n - 3$.

- 1. Montrer que, pour tout entier naturel n, $v_{n+1} = -\frac{1}{2}v_n^2$.
- 2. Démontrer par récurrence que, pour tout entier naturel n, $-1 \le v_n \le 0$.
- 3. a. Démontrer que, pour tout entier naturel n, $v_{n+1} v_n = -v_n \left(\frac{1}{2}v_n + 1\right)$.
 - b. En déduire le sens de variation de la suite (v_n).
- 4. Pourquoi peut-on alors affirmer que la suite (vn) converge?
- On note ℓ la limite de la suite (v_n).
 On admet que ℓ appartient à l'intervalle [-1; 0] et vérifie l'égalité : ℓ = -1/2 ℓ².
 Déterminer la valeur de ℓ.
- 6. Les conjectures faites dans la partie A sont-elles validées?

Partie A

On considère la suite (u_n) définie par : $u_0 = 2$ et, pour tout entier naturel n :

$$u_{n+1} = \frac{1+3u_n}{3+u_n}$$
.

On admet que tous les termes de cette suite sont définis et strictement positifs.

- 1. Démontrer par récurrence que, pour tout entier naturel n, on a : $u_n > 1$.
- 2. a. Établir que, pour tout entier naturel n, on a : $u_{n+1} u_n = \frac{(1 u_n)(1 + u_n)}{3 + u_n}$.
 - b. Déterminer le sens de variation de la suite (u_n). En déduire que la suite (u_n) converge.

Partie B

On considère la suite (u_n) définie par : $u_0 = 2$ et, pour tout entier nature n :

$$u_{n+1} = \frac{1+0.5u_n}{0.5+u_n}$$

On admet que tous les termes de cette suite sont définis et strictement positifs.

1. On considère l'algorithme suivant :

Entrée	Soit un entier naturel non nul n
Initialisation	Affecter à u la valeur 2
Traitement et sortie	POUR i allant de 1 à n Affecter à u la valeur $\frac{1+0,5u}{0,5+u}$ Afficher u
	FIN POUR

Reproduire et compléter le tableau suivant, en faisant fonctionner cet algorithme pour n = 3. Les valeurs de u seront arrondies au millième.

i	1	2	3
и			

Pour n = 12, on a prolongé le tableau précédent et on a obtenu :

i	4	5	6	7	8	9	10	11	12
и	1,0083	0,9973	1,0009	0,9997	1,0001	0,99997	1,000 01	0,99999	6 1,000 00

Conjecturer le comportement de la suite (u_n) à l'infini.

- 3. On considère la suite (v_n) définie, pour tout entier naturel n, par : $v_n = \frac{u_n 1}{u_n + 1}$.
 - a. Démontrer que la suite (v_n) est géométrique de raison $-\frac{1}{3}$.
 - **b.** Calculer v_0 puis écrire v_n en fonction de n.
- a. Montrer que, pour tout entier naturel n, on a : v_n ≠ 1.
 - **b.** montrer que, pour tout entier naturel n, on a : $u_n = \frac{1 + v_n}{1 v_n}$.
 - Déterminer la limite de la suite (u_n).

Soit la suite numérique (u_n) définie sur l'ensemble des entiers naturels $\mathbb N$ par

$$\begin{cases} u_0 = 2 \\ \text{et pour tout entier naturel } n, u_{n+1} = \frac{1}{5} u_n + 3 \times 0, 5^n. \end{cases}$$

 a. Recopier et, à l'aide de la calculatrice, compléter le tableau des valeurs de la suite (u_n) approchées à 10⁻² près :

n	0	1	2	3	4	5	6	7	8
u_n	2					7			

- b. D'après ce tableau, énoncer une conjecture sur le sens de variation de la suite (u_n).
- 2. a. Démontrer, par récurrence, que pour tout entier naturel n non nul on a

$$u_n \geqslant \frac{15}{4} \times 0.5^n$$
.

- **b.** En déduire que, pour tout entier naturel n non nul, $u_{n+1} u_n \le 0$.
- c. Démontrer que la suite (u_n) est convergente.
- On se propose, dans cette question de déterminer la limite de la suite (u_n).
 Soit (v_n) la suite définie sur N par v_n = u_n − 10 × 0,5ⁿ.
 - a. Démontrer que la suite (v_n) est une suite géométrique de raison $\frac{1}{5}$. On précisera le premier terme de la suite (v_n) .
 - b. En déduire, que pour tout entier naturel n,

$$u_n = -8 \times \left(\frac{1}{5}\right)^n + 10 \times 0,5^n.$$

- c. Déterminer la limite de la suite (u_n)
- Recopier et compléter les lignes (1), (2) et (3) de l'algorithme suivant, afin qu'il affiche la plus petite valeur de n telle que u_n ≤ 0,01.

